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The practical importance and timeliness of the study of the mechanical macroscopic 
behavior of composite microinhomogeneous media are determined by its ability to 
give criteria for estimating the limiting load of various structural elements, the 
flow of multiphase dispersed systems, the deformation of materials made by powder 
metallurgy methods, etc. The theoretical prediction of the properties of compos- 
ites is generally most effectively realized when their structural representations 
are based on the theory of random fields. Application of the "strong isotropy" 
hypothesis [i] for the statistical averaging of certain relations of a perfectly 
plastic body with microstructure permits the determination of its macroscopic yield 
surface. 

Suppose the mechanical properties of the components of a two-phase isotropic rigid- 
plastic body are described by a yield surface taking account of hydrostatic pressure 

s ~ j s o + a ~ u = k ~ ,  a = t ;  2, 

where si: = ~iy--(I/3)6o~u; ~j is the stress tensor, the k s are the plasticity limits of the 
phases, the a s are parameters characterizing the volume compressibility of the components, 
and oZl is the first invariant of the stress tensor. 

The relative position of the components in space, connected with one another by perfect 
adhesion, is such that the rate of displacement field vi(x) is continuous, is characterized 
by random isotropy of the indicator function ~(x), equal to unity at points of the first 
phase, and zero in the second. With its help the local associated yield law of the medium 
can be written in the form 

%j ( x )  - -  8~jb (x) ~u (x) 
% (x) = k (x) V ~  (x) ~mn (x) -- b (x) ~ (~) (1) 

Here sij (x) is the rate of strain tensor; k(x) = k I q- [k]• b(x) = ~-~ [b]• b= = (3a= ~- 
1)/9, square brackets denote values of the discontinuities of the parameters in passing 
through a p]hase boundary -- [f] = fa -- fx. The function ~(x), the stresses, and the rates 
of strain are assumed to be random uniform and ergodic fields, and their mathematical expec- 
tations agree with the volume averages of the components V s also over the total volume V = 
Vl + V2 [2] 

= v i  .f 
V g~ 

We neglect the fluctuations of the dissipative function in the volume V and write (I) 
in the form 

Aoi5 =: k 2 (x) eiS (x) - -  k 2 (x) b (x) 6Oe~l, (2 )  

where A = <~ij~ij>, Substituting (2) into the equilibrium equations 

O~j, 7 = O, 

we find 

o t 2 r t 

l,'~i~,.i - -  k~b,~u,i + Fi = O, 
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where 77~ = [k~](• [k=b](• , 
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and primes denote fluctuations of quantities. Adding the 

we obtain a closed system of equations for the vi'(x), which with the help of the Green 
! 

tensor is transformed into a system of integral equations for the components of the eij (x) 
tensor [3, 4]: 

(x) = .f G~(~,~)j (x - -  D" ([k~] ~ (D ~kz (D - -  6~z [k'-b] • (~) ~,.,, (D - -  8~j 
v (3) 

-- Ik "~] <• § [k2b] 6hl <• dV. 

To determine the rheological relation between the volume averages of the stresses and 
rates of strain it is necessary to evaluate the tensor <• Since the composite under 
consideration is isotropic, the "strong isotropy" hypothesis can be applied. The correla- 
tion functions 

<~' (~) • (D e;. (~)> 
which appear under the integral sign in the multiplication of Eq. (3) by ~'(x) and the sub- 
sequent averaging over V are assumed to depend only on the distance Ix -- ~I" Then [4] 

, i cO--c)  
<u eij> = iSkl ~ (i -~ 6al) ((6 -~- 54at) d U --  ~ j  (2 -~ 3al) dn~). 

Here d~j =--[k~]<eij)~ q-6ii[k2b]<ezl>~; c = V2V -t is the volume fraction of the second phase. 
Adding the obvious relations 

, -- t t <e~)2 = <eu> t c i <• ~ij>, 

t i we obtain a system of equations for <• e~j>. The substitution of the solution of this sys- 
tem into Eq. (2) averaged over V gives 

( ) < e n t  A <aij> = A <e~j> ~- ~ij B--yA >, (4) 

where 

15~ lk2] (1 + 6al) ) 

9 .~ (k~ + ~ ~  + ~  ( k ~  - A I.~) 

We determine A from the relation 

,f (~js~jdV = O, 
V 

obtained by multiplying the equilibrium equations byv i' and integrating over the total volume 
of the composite. Now A = <~i~)<eij>. Eliminating the tensor <eij> from this and Eq. (4), 
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we find the macroscopic yield surface of the microinhomogeneous medium under consideration 

<sU>(su> Jr  a*<ozz> ~ = k*2~ (5)  

w h e r e  k* = A1/2  i s  t h e  e f f e c t i v e  p l a s t i c i t y  l i m i t  o f  t h e  c o m p o s i t e ,  a n d  a*  = A/9B i s  i t s  
m a c r o s c o p i c  p a r a m e t e r ,  t a k i n g  a c c o u n t  o f  v o l u m e  c o m p r e s s i b i l i t y .  

F i g u r e s  1 and  2 show t h e  d e p e n d e n c e  o f  t h e  e f f e c t i v e  p l a s t i c i t y  l i m i t  on t h e  v o l u m e  
f r a c t i o n  o f  t h e  s e c o n d  p h a s e .  The n u m b e r s  on  t h e  c u r v e s  a r e  t h e  v a l u e s  o f  t h e  r a t i o  k 2 / k l ;  
a~ = 0 . 2 5 .  The f o r m u l a  f o r  k* shows  t h a t  t h e  c o m p o n e n t s  o f  t h e  c o m p o s i t e  t a k e  p a r t  i n  t h e  
d e f o r m a t i o n  i n  d i f f e r e n t  w a y s :  i f  t h e  s e c o n d  p h a s e  c o n s i s t s  o f  v o i d s  and  c a v i t i e s  (k2 = 0 ) ,  
k * ~ 0 ;  i f  l~he f i r s t  p h a s e  i s  s u c h  v o i d s  (k~ = 0 ) ,  k* ~ 0.  T h i s  m e a n s  t h a t  t h e  m o d e l  c o n -  
s t r u c t e d  d e s c r i b e s  t h e  p r o p e r t i e s  o f  a n  i n h o m o g e n e o u s  b o d y  i n  w h i c h  t h e  f i r s t  c o m p o n e n t  i s  
t h e  m a t r i x  a n d  t h e  s e c o n d  t h e  i n c l u s i o n s .  

F i g u r e  3 shows  t h e  d e p e n d e n c e  o f  a *  on t h e  v o l u m e  f r a c t i o n  o f  t h e  i n c l u s i o n s .  The num- 
b e r s  on  t h e  c u r v e s  a r e  t h e  v a l u e s  o f  t h e  r a t i o  a 2 / a ~ ;  a~ = 0 . 5 ,  k 2 / k ~  = 5 .  I t  i s  i n t e r e s t -  
i n g  to note that for a2 = aa, a*~l and depends on the ratio of the plasticity limits. It 
can be seen from the expression for a* that a composite material corresponding to the model 
constructed is macroscopically incompressible when and only when both parameters a~ = a2 = 0. 

The proposed model of a microinhomogeneous rigid-plastic medium is graphically illus- 
trated by a composite in which the inclusions are pores (k2 = 0) and the material of the 
matrix is plastically incompressible (a~ = 0). Then Eq. (5) takes the form 

c ~ 3 ( t  --c) 
<Su> (Su> ~- 2 (3 + 2c) <qtl>2 = ~i 3+--~-c " (6) 

Equation (6) represents the macroscopic yield surface of an isotropic porous material whose 
matrix satisfies the Mises yield condition. Martynova and Skorokhod [5] investigated, the 
mechanical properties of porous electrolytic nickel subjected to uniaxial compression in a 
mold. From the associated yield law corresponding to (6) it follows that the pressure p 
within such a mold is given by the expression 

3p = <ou> = kl 3 -- c -- 2c 2 
3c + 5c ~" 

The dependence of the porosity on the pressure is given by the expression 

c = ( ~ ( 3 m - -  t) 3 + 12(5m + 2 ) - -  3 m - -  t ) / ( i 0 m  + 4), 
3p ~- 
2k~" 

Figure 4 compares the theoretical compaction curve (solid line) with the experimental 
points [5]. 
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